
History Trees as Descriptors of
Macromolecular Structures

Deniz Sarioz1, T. Yung Kong2, and Gabor T. Herman1

1 Ph.D. Program in Computer Science, The Graduate School and University Center
City University of New York, New York, NY 10016, USA

sarioz@acm.org gabortherman@yahoo.com
2 Department of Computer Science, Queens College,

City University of New York, Flushing, NY 11367, USA
ykong@cs.qc.edu

Abstract. High-level structural information about macromolecules is
now being organized into databases. One of the common ways of storing
information in such databases is in the form of three-dimensional (3D)
electron microscopic (EM) maps, which are 3D arrays of real numbers
obtained by a reconstruction algorithm from EM projection data. We
propose and demonstrate a method of automatically constructing, from
any 3D EM map, a topological descriptor (which we call a history tree)
that is amenable to automatic comparison.

Key words: Discrete shape representation; digital topology; macro-
molecular structures; volume images.

1 Introduction

High-level structural information about macromolecules is now being organized
into databases such as the Quaternary Protein Structure (QPS) and the Electron
Microscopy Data Base (EMDB), both at the European Bioinformatics Institute
(EBI). Initiatives in the EM field are also starting in the US, nucleated around
the Research Collaboratory for Structural Bioinformatics (RCSB) that is respon-
sible for the database called the Protein Data Bank (PDB).

These databases include reconstructions from EM data, i.e., 3D arrays of
real numbers that are voxelizations of macromolecular structures. Suppose that
a biology researcher has obtained from EM projections a new reconstruction of
the structure of a macromolecule, and would like to see if a database contains
a similar object. The very large size of these 3D arrays, the arbitrary position
and orientation of the molecule in the array and the possibility of non-linear
stretching of the range make standard methods of comparison infeasible. Hence,
there is a need for exploring and analyzing topological and geometrical features of
the contents of such large aggregates in a systematic, quantitative and automatic
manner to mine the information contained in these databases. In the following we
propose a method of automatically producing topological descriptors of 3D EM
arrays, and demonstrate it on arrays that we acquired from EBI. We believe that

comparison of these descriptors using appropriately defined similarity measures
will be useful in the identification and classification of macromolecules.

2 Mathematical Preliminaries

2.1 Foreground Components in 3D Images; f-Ancestors

An EM reconstruction is typically represented as a 3D image — i.e., a real-valued
mapping f defined on the voxel set X of a box-shaped region. For every real num-
ber t, we define the foreground voxel set of f at t as: Ff (t) = {x ∈ X | f(x) ≥ t}.
Note that Ff shrinks monotonically: if t1 < t2, then Ff (t1) ⊇ Ff (t2). We par-
tition each foreground voxel set Ff (t) into connected components based on 6-
connectivity [1]. [Two voxels are 6-adjacent if they share a face. A 6-path in U is
a sequence of voxels in U in which every consecutive pair of voxels are 6-adjacent.
A set U of voxels is 6-connected if for every pair of voxels in U there is a 6-path
in U that begins at one voxel of the pair and ends at the other. A 6-component
of U is a maximal non-empty 6-connected subset of U .]

Let Cf (t) denote the collection of 6-components of Ff (t) and let Cf =⋃
t∈IR Cf (t). If D1, D2 ∈ Cf , then we say D1 is an f-ancestor of D2 if there

exist t1 ≤ t2 such that D1 ∈ Cf (t1), D2 ∈ Cf (t2) and D1 ⊇ D2.

2.2 Foreground History Trees

We define the ancestor and descendant relations on the vertices of a rooted tree
recursively, as follows (cf. [2, p. 93]): If v1 and v2 are vertices of a rooted tree,
then v1 is an ancestor of v2 (and v2 is a descendant of v1) if v1 = v2 or v1 is an
ancestor of the parent of v2.

A foreground history tree (FHT) for an image f is a rooted tree T in which
each vertex v is associated with a real number LT (v), called its level, and a set
DT (v) ∈ Cf (LT (v)), and in which the following conditions are satisfied:

1. If LT (v1) = LT (v2) and DT (v1) = DT (v2), then v1 = v2.
2. A vertex v1 is an ancestor in T of a vertex v2 if, and only if, LT (v1) ≤ LT (v2)

and DT (v1) is an f -ancestor of DT (v2).

We will usually omit the subscript T from LT and DT unless it is needed to
distinguish the L and D functions of different FHTs.

Note that if a vertex v1 is the parent of a vertex v2 in an FHT, then we have
that L(v1) < L(v2). Indeed, v1 is an ancestor of v2, and so L(v1) ≤ L(v2) and
D(v1) is an f -ancestor of D(v2). Suppose L(v1) = L(v2). Then D(v1) and D(v2)
would both be 6-components of Ff (L(v1)) = Ff (L(v2)), and since D(v1) ⊇
D(v2) (because D(v1) is an f -ancestor of D(v2)) this would imply D(v1) =
D(v2). But then v1 = v2 (as L(v1) = L(v2)) contrary to the fact that v1 is the
parent of v2.

FHTs are related to contour trees [3]; but contour trees are not necessarily
rooted, whereas FHTs are. It is our hypothesis that FHTs can be made to reflect
certain essential properties of macromolecules, and so provide a suitable basis
for assessing the similarity of macromolecules.

3 Methods and Results

3.1 Obtaining a Foreground History Tree

Let f : X → IR be a 3D image, and let τ1 > τ2 > . . . > τk be a strictly decreasing
finite sequence of real numbers such that fmax ≥ τ1 and fmin ≥ τk, where fmax

and fmin are the maximum and the minimum values attained by f on the set of
voxels X. [Thus ∅ (Ff (τ1) ⊆ Ff (τ2) ⊆ . . . ⊆ Ff (τk) = X, and |Cf (τk)| = 1.]

We now describe an algorithm that constructs an FHT T for f which satisfies
the condition {L(v) | v ∈ Vertices(T)} = {τi | 1 ≤ i ≤ k}, and which has as
many vertices as is possible for such an FHT. For convenience in describing the
algorithm, we define τ0 to be an arbitrary but fixed number that exceeds fmax,
so that Ff (τ0) = ∅ and hence Cf (τ0) = ∅.

The algorithm is based on a data structure which represents a collection
of pairwise disjoint nonempty sets of voxels. Operations MAKE SET(x) and
UNITE SETS(x1, x2) are used to change the represented collection of sets. These
are defined below the next paragraph, whose aim is to provide the reader with
an initial understanding of how the algorithm alters the data structure and, at
the same time, builds up the FHT.

The algorithm has a main loop whose body is executed k times. At the end
of the ith iteration of the loop, the data structure represents the collection of
sets Cf (τi) and the FHT has been built (from its leaves towards its root) up to
the level τi; i.e., all vertices v in the eventual FHT for which L(v) ≥ τi have
been created, and both L(v) and D(v) ∈ Cf (L(v)) have been determined for
these vertices, as well as the parent-child relationships among them. Clearly, at
the end of the kth iteration, we have produced the whole FHT.

When the data structure represents a collection S (of disjoint sets of voxels),
and x is any voxel such that x 6∈ ⋃S, a call of MAKE SET(x) adds the singleton
set {x} to the represented collection of sets: It changes the data structure from
a representation of S to a representation of S ∪ {{x}}.

The algorithm calls UNITE SETS either to replace two existing sets of voxels
in the represented collection of sets with the union of those two sets, or to insert a
new voxel, which does not yet belong to any set in the represented collection, into
one of the sets in the collection. The effect of calling UNITE SETS can be more
precisely described as follows. Let x1 and x2 be voxels, and let S be the collection
of sets that is represented by the data structure when UNITE SETS(x1, x2) is
called. For i = 1, 2, let Si = {xi} if xi /∈ ⋃S, and let Si be the member of S
that contains xi if xi ∈

⋃S. Then the call UNITE SETS(x1, x2) changes the
data structure from a representation of S to a representation of the collection
(S \ {S1, S2}) ∪ {S1 ∪ S2}.

The data structure is in fact a forest of rooted trees of nodes, together with
a list of the root nodes of all the trees in the forest. Our data structure is an
example of a disjoint-set forest (DSF) [2, pp. 446–450]. Trees and nodes of our
DSF will be called DSFtrees and DSFnodes. The list of root nodes is given by
the variable CURRENT DSF ROOTS, which is updated by UNITE SETS and
MAKE SET.

There is a 1-to-1 correspondence between the collection of all DSFtrees of
the DSF and the collection of disjoint sets of voxels that is represented by the
DSF. Each voxel x has a field x.DSFnode that can either be a DSFnode or be
NIL. A voxel x belongs to the set of voxels that corresponds to a DSFtree T if,
and only if, x.DSFnode is a DSFnode in T . Thus x.DSFnode is NIL if, and only
if, x does not belong to any set in the collection of sets that is represented by
the DSF. If x.DSFnode is NIL, then a call of MAKE SET(x) will create a new
DSFtree that consists of one new DSFnode and will set x.DSFnode to be that
new DSFnode. This is the only way in which the algorithm creates DSFnodes.

The role of a DSFnode in our algorithm is analogous to the role of a label in
standard connected component labeling algorithms for binary images (see, e.g.,
[4, pages 347–349]). DSFnodes that belong to the same DSFtree correspond to
“equivalent” labels (i.e., labels that represent the same component).

The algorithm uses a function DSF ROOT(), which is such that if ν is any
DSFnode then DSF ROOT(ν) returns the root of the DSFtree which contains ν.
Thus two voxels x and y belong to the same member of the collection of sets that
is represented by the DSF if, and only if, x.DSFnode 6= NIL, y.DSFnode 6= NIL
and DSF ROOT(x.DSFnode) = DSF ROOT(y.DSFnode).

The algorithm starts by scanning the voxels in X and assigning each of them
to one of k voxel “bins” B[1], B[2], . . . , B[k] as follows: A voxel x ∈ X is placed
in the bin B[j], where j is the integer such that τj−1 > f(x) ≥ τj . [Thus the
set of voxels that are placed in each bin B[i] is just Ff (τi) \Ff (τi−1).] The DSF
is initialized to be empty, so x.DSFnode is NIL for every voxel x in X, and
CURRENT DSF ROOTS is an empty list. [It follows that, for all voxels x at all
times during the execution of the algorithm, x.DSFnode is NIL if, and only if,
x has never been an argument of a call of MAKE SET() or UNITE SETS().]

After this initialization, the rest of the algorithm is stated by the pseu-
docode below. The loop on lines 4–7 transforms the DSF from a representa-
tion of Cf (τi−1) to a representation of Cf (τi). [Note that x.DSFnode must be
NIL on entry to the inner loop on lines 5–6, because the voxel x will not have
been an argument of any earlier call of MAKE SET() or UNITE SETS(). So
MAKE SET(x) will be called on line 7 if, and only if, y.DSFnode = NIL for
every 6-neighbor y of x.] Lines 8–11 create the vertices of the FHT that have
level τi, and assign the children to the newly created vertices.

1. for i← 1 to k do
2. foreach ν ∈ CURRENT DSF ROOTS do ν.oldVertex← ν.vertex;
3. previousDSFroots ← a copy of the list CURRENT DSF ROOTS;
4. foreach x ∈ B[i] do
5. foreach 6-neighbor y of x in X do
6. if y.DSFnode 6= NIL then UNITE SETS(x, y);
7. if x.DSFnode = NIL then MAKE SET(x);
8. foreach ν ∈ CURRENT DSF ROOTS do
9. ν.vertex← a new FHT vertex v with L(v) = τi and D(v) = ν;
10. foreach ν ∈ previousDSFroots do
11. Make (DSF ROOT(ν)).vertex the parent of ν.oldVertex;

The UNITE SETS(x, y) operation and the DSF ROOT(ν) function are im-
plemented using union-by-rank with path-compression [2, p. 447]. The running
time of a sequence of m calls of MAKE SET, UNITE SETS and DSF ROOT
is O(mβ(m)), where β(m) is an extremely slowly growing function of m [2,
p. 449]. [β(m) = α(m,m), where α is an inverse of Ackermann’s function.] In
fact β(m) = 3 or 4 for all values of m ≥ 8 that might occur in any conceivable ap-
plication. In our applications the number k of levels or bins is very much smaller
than the number |X| of voxels in the domain X of the image f , and

∑k
i=1 |Cf (τi)|

is also smaller than |X|. In this context the time complexity of the algorithm
is O(|X| log k + |X|β(|X|)), where the term |X| log k corresponds to the time
complexity of initializing the k bins, and the factor log k assumes the use of
binary search to find the appropriate bin for each voxel. As β(|X|) = 3 or 4 for
all images of practical interest, the time-complexity is “essentially” O(|X| log k).
If the levels τi are regularly spaced, then the bin for each voxel can be found in
O(1) time and the time-complexity of the algorithm is essentially O(|X|).

3.2 Preliminary Results and the Need for Simplification

We applied our method to several macromolecules, and here we present its ap-
plication to a reconstruction of the e. coli 70s ribosome [5], and a helical recon-
struction of drosophila kinesin dimer AMP-PNP state [6]. Figs. 1 and 2 show
surface visualizations and cross-sections of these specimens. Figs. 3(a) and 4(a)
show associated FHTs. We used the drawgram program in the package PHYLIP
[7] to generate these tree images. Each vertex that has more than one child is
represented by a horizontal segment. The presence of a downward segment from
a horizontal segment a to a horizontal segment or endpoint d indicates that the
vertex represented by d is a descendant of the vertex represented by a, and the
length of the downward segment is proportional to the difference between the
levels of those vertices. In each case, we eliminated the vertical segment from
the root of the tree.

These FHTs are given by the algorithm of Sect. 3.1 with k = 128 and, for
1 ≤ i ≤ 128, τi = fmax − i∆, where ∆ = (fmax − fmin)/128.

While they appear to be different, the trees of Figs. 3(a) and 4(a) are so clut-
tered that one cannot be sure whether or not the difference is just an artifact of
the display. We need to construct simpler FHTs that better reveal the structural
essence of the molecules.

3.3 Pruning FHTs by Component Size

Pruning an FHT by component size removes all vertices that correspond to
components containing fewer than a certain number of voxels. This transforms
an FHT T for an image f to an FHT T ′ for f such that Vertices(T ′) =
{v ∈ Vertices(T) | |DT (v)| ≥ δ}, in which the functions LT ′ and DT ′ are the
restrictions to Vertices(T ′) of LT and DT . Here δ is a positive integer parameter
that represents the minimum allowed component size. [This operation cannot

Fig. 1. EMD-1006: E.coli 70s ribosome / ribosome-bound termination factor RF2,
surface visualization and cross-sections (51 and 80 of 130).

Fig. 2. EMD-1032: Drosophila kinesin dimer AMP-PNP state, surface visualization
and cross-sections (47 and 63 of 100).

(a) (b)

Fig. 3. FHTs based on EMD-1006: (a) unpruned, (b) pruned by minimum component
size of 25.

(a) (b)

Fig. 4. FHTs based on EMD-1032: (a) unpruned, (b) pruned by minimum component
size of 20.

disconnect the tree, for if a vertex u of an FHT is the parent of a vertex v, then
|D(v)| ≥ δ implies |D(u)| ≥ δ.]

It is easy to incorporate pruning by component size into the algorithm of
Sect. 3.1 for producing an FHT. The pseudocode need not be changed. It suffices
to store the size of the set of voxels that is represented by each DSFtree in a field
of its root DSFnode, and include in the list CURRENT DSF ROOTS just those
root DSFnodes whose size fields are greater than or equal to δ. The algorithm
will then construct the tree that would be obtained if we pruned the FHT that
is produced by the original version of the algorithm.

Figs. 3(b) and 4(b) show pruned FHTs of the images of Figs. 1 and 2.

3.4 Pruning FHTs by Subtree Height

The FHTs that are constructed as described above tend to have “comb-like”
structures: There are many leaves near the root. [See the right side of each tree
in Figs. 3 and 4.] These leaves correspond to components of the foreground voxel
set at very low gray values, and seem mostly to represent components of the ice
in which the specimen under study is embedded.

Pruning by subtree height is a second method of pruning that can be applied
to FHTs. It eliminates the above-mentioned leaves and some other artifacts that
are likely to be due to noise.

Pruning by subtree height h transforms an FHT T for an image f to an FHT
T ′ for f such that Vertices(T ′) = {v ∈ Vertices(T) | subtree-heightT (v) ≥ h}, in
which the functions LT ′ and DT ′ are the restrictions to Vertices(T ′) of LT and
DT . Here subtree-heightT (v) = max{L(w)−L(v) | w is a descendant of v in T}.
Figs. 5 and 6 show the effects of this operation on the FHTs of Figs. 3(b) and
4(b), for two different values of h.

(a) (b)

Fig. 5. FHTs based on EMD-1006: minimum component size of 25, pruned by subtree
height parameter (a) h = 4∆, (b) h = 20∆, where ∆ = (fmax − fmin)/128.

(a) (b)

Fig. 6. FHTs based on EMD-1032: minimum component size of 20, pruned by subtree
height parameter (a) h = 4∆, (b) h = 20∆, where ∆ = (fmax − fmin)/128.

3.5 Elimination of Short Edges from FHTs

Pruning by subtree height only helps near the leaves. Other parts of the tree
will not be simplified unless one chooses a very high value of h to prune by, in
which case one could lose much valuable information.

We have developed another method of simplifying FHTs that can be applied
after pruning by subtree height, and which does not have this shortcoming. We
call this method elimination of short edges, because it essentially eliminates edges
anywhere in the tree that are not longer than a positive parameter ε. Figs. 7 and
8 show its effect on the FHTs of Figs. 5(a) and 6(a), for two different values of
the parameter ε.

Simplification of an FHT T by elimination of short edges can be accomplished
by calling SIMPLIFY(root(T), root(T), ε), where root(T) is the root of T and
SIMPLIFY() is defined as follows:

(a) (b)

Fig. 7. FHTs based on EMD-1006: minimum component size of 25, pruned by subtree
height parameter h = 4∆ and short edges eliminated by parameter (a) ε = 2∆, (b)
ε = 9∆, where ∆ = (fmax − fmin)/128.

(a) (b)

Fig. 8. FHTs based on EMD-1032: minimum component size of 20, pruned by subtree
height parameter h = 4∆ and short edges eliminated by parameter (a) ε = 2∆, (b)
ε = 9∆, where ∆ = (fmax − fmin)/128.

SIMPLIFY(Vertex v, Vertex r, float ε):
foreach child c of v do

if L(c) > L(r) + ε then
if r 6= v then make r the parent of c;
SIMPLIFY(c, c, ε);

else
SIMPLIFY(c, r, ε);
Remove the vertex c;

We can give a non-recursive characterization of the effect of this simplifi-
cation method. Let T be any FHT for an image f . We define an ε-acceptable
simplification of T to be an FHT T ′ for f that satisfies the following conditions:

1. Vertices(T ′) ⊆ Vertices(T), and the functions LT ′ and DT ′ are the restric-
tions to Vertices(T ′) of the functions LT and DT .

2. For all p, c ∈ Vertices(T ′) such that p is the parent of c in T ′, L(c) > L(p)+ε.

Let ≤ denote the partial order, on the set of all ε-acceptable simplifications of T ,
such that T1 ≤ T2 if, and only if, each vertex in Vertices(T1) \ Vertices(T2) has
an ancestor in T that lies in Vertices(T2) \ Vertices(T1). Then the FHT that is
produced from the FHT T by SIMPLIFY(root(T), root(T), ε) is the ε-acceptable
simplification of T that is maximal with respect to ≤.

A consequence of the fact that elimination of short edges affects all parts of
the tree is that, for similar values of the parameters ε and h, elimination of short
edges will typically remove many more vertices than pruning by subtree height.

4 Discussion

EM reconstruction need not preserve the geometry of the specimens under study.
The foreground history tree (FHT) of a 3D gray-valued voxel-based image is a
useful descriptor that is insensitive to topology-preserving transformations.

We have presented parametric methods of simplifying FHTs that remove ar-
tifacts due to noise, while preserving what seem to be essential spatial properties
of the specimens. The simplified FHTs of different specimens obtained from a
molecular database capture some of the structure in those specimens. For exam-
ple, the FHTs in Fig. 8 of the helical structure shown in Fig. 2 contain a vertex
from which many similar-looking subtrees are descended.

FHTs provide a potentially useful way of discretely representing essential
aspects of the shape of a complicated object. Thus we believe that they can be
used in methods of querying macromolecular databases.

Acknowledgments

This work was supported by the National Institutes of Health Grant HL070472.
Our interactions with P. L. Combettes, J.-M. Carazo, R. Marabini, E. Garduño,
S. H. W. Scheres, and I. Montealegre were helpful in preparing this manuscript.

References

1. Rosenfeld, A.: Three-dimensional digital topology. Information and Control 50
(1981) 119–127

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT
Press, Cambridge, MA, USA (1990)

3. Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. Com-
putational Geometry: Theory and Applications 24 (2003) 75–94

4. Rosenfeld, A., Kak, A.C.: Digital Picture Processing. Academic Press, New York,
NY, USA (1976)

5. Rawat, U., Zavialov, A.V., Sengupta, J., Valle, M., Grassucci, R.A., Linde, J.,
Vestergaard, B., Ehrenberg, M., Frank, J.: A cryo-electron microscopic study of
ribosome-bound termination factor RF2. Nature 421 (2003) 87–90

6. Hoenger, A.: A new look at the microtubule binding patterns of dimeric kinesins.
Journal of Molecular Biology 297 (2000) 1087–1103

7. Felsenstein, J.: PHYLIP - phylogeny inference package (version 3.2). Cladistics 5
(1989) 164–166

